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Abstract

Efficient action recognition has become crucial to extend
the success of action recognition to many real-world appli-
cations. Contrary to most existing methods, which mainly
focus on selecting salient frames to reduce the computa-
tion cost, we focus more on making the most of the se-
lected frames. To this end, we employ two networks of
different capabilities that operate in tandem to efficiently
recognize actions. Given a video, the lighter network pro-
cesses more frames while the heavier one only processes
a few. In order to enable the effective interaction between
the two, we propose dynamic knowledge propagation based
on a cross-attention mechanism. This is the main compo-
nent of our framework that is essentially a student-teacher
architecture, but as the teacher model continues to inter-
act with the student model during inference, we call it a
dynamic student-teacher framework. Through extensive ex-
periments, we demonstrate the effectiveness of each compo-
nent of our framework. Our method outperforms competing
state-of-the-art methods on two video datasets: ActivityNet-
v1.3 and Mini-Kinetics.

1. Introduction

Video action recognition is one of the fundamental prob-
lems for video understanding. Consequently, several meth-
ods have been proposed and significant progress has been
made over the last decade thanks to advances in deep learn-
ing. Recent state-of-the-art methods mostly use 3D-CNN
that takes as input a video clip of several frames [9, 13].
Many of these methods densely sample clips from each
video and aggregate the activations to achieve excellent re-
sults. However, they require high computational costs, mak-
ing it challenging to apply to practical applications. In this
paper, we are interested in the problem of efficient video
recognition, to achieve better performance and computa-
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Figure 1: mAP vs. GFLOPs curves on ActivityNet-v1.3 [5]:
The proposed dynamic student-teacher framework performs
similar to or better than the recent state-of-the-art meth-
ods [11, 22, 26, 44, 45] at a much lower computational cost.
More experimental results are available in Section 4.

tional cost trade-off as shown in Figure 1.
Multiple approaches have been proposed for efficient ac-

tion recognition in recent years with focus on two aspects:
(a) more efficient CNNs and (b) salient frame/clip selec-
tion. On the first aspect, methods have been proposed to
design efficient versions of 3D-CNN [21, 29, 35, 36, 46],
such as the temporally separable convolution that reduces
the computational cost per clip. But the more successful
way has been to simply switch to the lighter 2D-CNNs in-
stead [8, 24], often in conjunction with RNN/LSTM mod-
els [3, 11, 44]. Even with more efficient networks, compu-
tation would be high for longer videos if all the frames are
processed. So, the second aspect of frame selection based
on saliency complements the first one and has led to most
success too [3, 11, 22, 44]. These methods rely on learning
a policy that decides how a particular frame should be pro-
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cessed/skipped [3,11] and at what resolution [26,30]. Such
policy functions certainly boost efficiency, however these
methods rely on the policy not to miss frames that are cru-
cial for action recognition.

In this paper, we focus on making the most of the se-
lected frames by minimizing the performance loss due to
switching to a lighter network while keeping the efficiency
high. To this end, we propose a knowledge propagation
framework with two networks, one light and the other rela-
tively heavy, that operate in tandem to efficiently recognize
actions. The interaction between the two networks is not
just limited to the training phase, but it is used for infer-
ence also, dynamically adjusting to each test video, hence
we call this method Dynamic Knowledge Propagation. We
take inspiration from the self-attention technique [38] that
describes a mapping between a query and key-value pairs.
Ours is a cross-attention mechanism instead, where the
query comes from the light network and key-value pairs
come from the heavy network. These two networks are used
as student and teacher models in our framework, which we
call Dynamic Student-Teacher architecture, as the student
and teacher interact dynamically for each test video. The
proposed framework lets the student process most of the
sampled frames, while the teacher processes only a few of
them. Then, with the dynamic knowledge propagation the
student features are enhanced by the better quality features
from the teacher model.

Our main contribution is the dynamic knowledge prop-
agation mechanism. This enables interaction between the
student and teacher model both during training and infer-
ence and is the key component of the proposed framework.
Our second contribution is the dynamic student-teacher
framework for efficient video action recognition. The
model combines light and heavy networks to reduce compu-
tational costs without significant performance degradation
using dynamic knowledge propagation. Finally, through
extensive experiments we demonstrate the effectiveness of
each component of the proposed approach. We evaluate our
method on two popular benchmarks, ActivityNet-v1.3 [5]
and Mini-Kinetics [4], and improve state-of-the-art on both
of them with 1.4× and 2.5× less GFLOPs, respectively.

2. Related Work

2.1. Efficient Video Recognition

There are two streamlines of deep learning approaches
for efficient action recognition. The first focuses on de-
signing network architecture to efficiently obtain the spatio-
temporal video representation. For example, [29, 36, 46]
factorized the 3D convolution filters to 2D spatial and 1D
temporal ones, and [21, 35] modified efficient 2D modules
to their 3D counterparts. [24] simply shifted part of features
temporally, and [7] extended it to adaptive spatio-temporal

shifting. SlowFast [10] are related to ours in that both meth-
ods use two-branch architectures. However, their objectives
and structural details are quite different. SlowFast intends
to capture different semantics, while our goal is efficiency.
Furthermore, SlowFast fuses two branches with several lat-
eral structures. Contrarily, the proposed dynamic knowl-
edge propagation module makes two branches interact dy-
namically, attaining both efficiency and accuracy.

The second streamline attempts to select salient frames
(or video clips) to alleviate the computational cost. The ad-
vantage of this approach is that it can be applied model-
agnostically. Reinforcement learning is utilized in [6,43,45,
47, 48] to train agents or policies to decide the next frame
to sample. Campos et al. [3] proposed Skip RNN model
that learns to skip state update to decrease the number of
sequential operations of RNN. Korbar et al. [22] designed a
ranking loss to learn a video clip sampler to mimic an oracle
sampler. To adaptively extract coarse or fine features, Wu
et al. [44] used a binary gate, and Meng et al. [26] devel-
oped a policy network which does even skipping. Quader et
al. [30] ensembled multiple networks with different spatio-
temporal granularity of inputs, invoking the finer network
when the previous coarse network failed. The closest to
ours is the method in [11] that trains a light Image+Audio
student with a 3D-CNN teacher. They also use a separate
attention-based LSTM network as a sampler with some ad-
ditional computational cost. The proposed dynamic knowl-
edge propagation also exploits student-teacher framework,
but unlike [11] it is a dynamic architecture with teacher ac-
tive during inference also.

2.2. Cross-Attention

Attention mechanisms have yielded significant improve-
ment in many tasks including image classification [17], ob-
ject detection [41], image captioning [18], and machine
translation [25, 38]. Recently, to leverage relationship be-
tween two heterogeneous representation, the diverse cross-
attention schemes are devised. Several works exploited the
cross correlation between the heterogeneous representation
as the attention weights for image and sentence matching
in visual question answering (VQA) [19, 23], and for query
and prototype matching in prototypical few-shot learning
[16]. Inspired by the transformer [38] which conducts self-
attention using the scaled dot-product of key, query, and
value, [40] applied the scaled dot-product operation for the
concatenation of image and text features for VQA. Also,
[37] attended query from one modality using key and value
of another modality for multi-modal sentiment analysis. In
this work, we exploit the scaled dot-product operation to
propagate the knowledge of a heavy network to a light one.
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Figure 2: The dynamic student-teacher model for efficient video recognition. Our framework has three stages. In the first,
feature sequences from the backbones are temporally enhanced by self-attention. Then, these enhanced feature sequences go
through the proposed dynamic knowledge propagation mechanism. Finally, the knowledge propagated features are combined
with student self-attended features via skip connection and used for action class prediction.

2.3. Knowledge Distillation

Recent studies have shown that the knowledge learned
from a teacher network can be used to improve the per-
formance of a student network [2, 15, 27]. In the litera-
ture, the teacher network often refers to a heavy and cum-
bersome model, whereas the student network a simple and
lightweight model. Both the teacher and student networks
address the same task. In the action recognition tasks, the
knowledge distillation framework is employed for student
networks to leverage the high-level knowledge of teacher
networks, such as depth [12] and temporal information [32].
[42] employed multiple different teacher networks. To re-
duce computational cost, [11, 28] used the teacher with
high-resolution inputs to leverage the student using low-
resolution inputs, and [39] exploited the teacher observing
the entire videos and student only seeing partial videos.
Also, distilling knowledge from the teacher taking high-
quality skeleton as inputs, [1] learned the student with low-
quality skeleton inputs. Contrary to the existing works, the
proposed method propagates the teacher’s knowledge to the
lightweight student also during the inference. With this, we
can effectively propagate the rich teacher’s knowledge to
the student using only a few sampled features.

3. Proposed Method

In this section, we first describe our dynamic knowledge
propagation. It is a cross-attention mechanism, between
two sequences, which relates different positions of one se-
quence to the other in order to propagate knowledge dy-
namically. Next, we present our dynamic student-teacher

framework, that employs the dynamic knowledge propaga-
tion in a student-teacher architecture for the efficient video
action classification. The dynamic student-teacher model
consists of light and heavy networks. The light network
(student) produces features for all the sampled frames very
efficiently, and the heavy network (teacher) extracts high-
quality features for a much smaller set of sampled frames.
Then, the dynamic knowledge propagation enriches the en-
tire student features using a handful of the teacher features.

3.1. Dynamic Knowledge Propagation

We consider two networks fs and ft, both trained for the
same task but have different capabilities (ft is deeper than
fs). Then, we sample two subsets of frames from a video,
one with ns frames and the other containing nt frames. The
first subset is processed by the network fs to extract feature
sequence, {hi

s}
ns
i=1, while the second one is processed by

the network ft to obtain feature sequence, {hi
t}

nt
i=1. Here,

hi
s ∈ Rds and hi

t ∈ Rdt .

Now, using {hi
s}

ns
i=1 and {hi

t}
nt
i=1, we propagate the

richer knowledge of ft to fs. To this end, inspired by
the self-attention mechanism [38], we develop the cross-
attention mechanism between the feature sequences of the
two models. Specifically, the feature sequences {hi

s}
ns
i=1

and {hi
t}

nt
i=1 are first projected to queries {qi

s}
ns
i=1 and key-

value pairs {(ki
t,v

i
t)}

nt
i=1, respectively. Here, qi

s ∈ Rdk ,
ki
t ∈ Rdk and vi

t ∈ Rds . Note that, unlike the self-attention,
the proposed cross-attention takes queries and key-value
pairs from different networks for the knowledge propaga-
tion between them. Then, the cross-attended feature hi

t→s
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for hi
s is generated by

hi
t→s =

∑
u

exp(qi
s · ku

t /τ)∑
r exp(q

i
s · kr

t/τ)
· vu

t (1)

where the temperature [15] τ is set to the square root of
key’s dimensionality in order to scale the dot-product of the
query and the key. Thus, the low-quality feature is replaced
with the weighted sum of the high-quality ones, where the
attention weights are determined by scaled dot-product sim-
ilarities between queries and keys. Also, note that the longer
feature sequence of fs are dynamically improved using a
small number of features of ft.

3.2. Dynamic Student-Teacher Framework

Figure 2 shows the overall architecture of the proposed
dynamic student-teacher model. To apply the dynamic
knowledge propagation to the student-teacher model, we
set backbone networks fs and ft as light student and heavy
teacher networks, respectively. These backbone networks
extract the frame-level features. The proposed dynamic
knowledge propagation utilizes both teacher and student
networks during testing phase. For efficiency, we set nt
much less than ns, so the deeper teacher network extract
better quality features from a much smaller number of
frames. Then, for each backbone, the frame-level features,
{zis}

ns
i=1 and {zit}

nt
i=1, are fed into the temporal feature fu-

sion module. On top of the temporal feature fusion mod-
ules, the dynamic knowledge propagation module transfers
the knowledge of the teacher network to the student. Then,
the class prediction module outputs video-level action class.
Our framework is different from usual student-teacher net-
work as during inference student and teacher act as an en-
semble and interact dynamically for each test video. There-
fore, to differentiate, we refer to it as Dynamic Student-
Teacher Ensemble (Dynamic-STE). Next, we discuss each
of these modules in detail.

Sampling scheme: As shown in Figure 3, a video can be
divided to T short clips, V t where t = 1, . . . , T . Since
a clip includes visually similar (almost identical) frames,
we summarize each clip with a representative frame which
is simply the first frame in a clip. To this end, in testing
phase, we uniformly sample frames with different sampling
intervals rs and rt for student and teacher, respectively. To
reduce the computation cost in the heavy teacher network,
we set rt > rs. Then, we sample ns = bT/rsc frames for
the student and nt = bT/rtc frames for the teacher. Also, as
illustrated in Figure 3, to avoid redundant sampling for the
student and the teacher, we skip the sampled student frame,
if it is in the same clip of a sampled teacher frame. However,
during training, to exploit the relationship between matched
features of student and teacher networks, we set rt equal to
rs allowing redundant sampling.

Figure 3: Sampling scheme at inference time (example for
a 6-clip video). From each clip V t, the first frame xt is
selected as a representative. The student (green) and teacher
(blue) uniformly sample the frames with different sampling
intervals, avoiding overlapped sampling. Then, for student,
the spatial resolution of the frame is reduced to a fourth.

Backbone network: The backbone network extracts fea-
tures from input clips (a frame per clip). According
to the role, the student employs a light backbone (e.g.
EfficientNet-B0 [33]) taking a low spatial resolution (112×
112) frames as inputs to quickly process all ns frames. On
the other hand, the teacher uses a relatively heavier back-
bone (e.g. EfficientNet-B3 [33]) taking high spatial resolu-
tion (224 × 224) inputs for more accurate prediction at an
additional computation cost.

Temporal feature fusion: As an action instance is cap-
tured by a temporal sequence of the several frames, it is es-
sential to aggregate neighboring frames over time for accu-
rate video action recognition. Therefore, for the frame-level
features of each backbone, we conduct the temporal feature
fusion using the self-attention mechanism [38]. First, three
linear projection layers generate query, key, and value for
each frame-level feature. Then, the scaled dot-product op-
eration of the queries, keys, and values produces the tem-
porally fused feature {hi}ni=1 where n is ns and nt for the
student and teacher, respectively.

Dynamic knowledge propagation: As described in Sec-
tion 3.1, the dynamic knowledge propagation transfers the
rich knowledge for actions from the teacher feature se-
quence to the student feature sequence. In the dynamic
knowledge propagation, the student features {hi

s}
ns
i=1 are

transformed to queries {qi
s}

ns
i=1 using a linear layer. Sim-
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ilarly, the teacher features {hi
t}

nt
i=1 are linearly projected

to keys {ki
t}

nt
i=1 and values {vi

t}
nt
i=1. Then, the knowledge

propagated student features, hi
t→s, are obtained using the

cross-attention in Equation (1). Here, the student knowl-
edge over larger number of frames is fused with the higher
quality teacher features. Then, through a residual connec-
tion the knowledge of the student is combined with hi

t→s as
follows:

oi
s = hi

s + hi
t→s. (2)

The residual connection has the effect of combining the
knowledge of the student and teacher networks. Note that
the first term hi

s is generated by the student network only,
and the second term hi

t→s is the dynamically modified stu-
dent feature using the teacher’s knowledge.

Class prediction: The class prediction is performed by a
simple linear classifier. Given {oi

s}
ns
i=1, the network com-

putes the score sij indicating the confidence that the ith
frame belongs to the jth action class. We then select the k
frames with the highest maximum confidence scores, where
k is proportional to the number of sampled student frames
ns as

k = max(1, bns
γ
c) (3)

where γ is a hyperparameter. Then, the dynamic student-
teacher model averages their scores for each class, and out-
puts the video action class with the maximum average score.

3.3. Loss Functions

Here, we describe the loss functions to train the dy-
namic student-teacher model. We learn the student and
teacher backbones independently. Hence, we first optimize
the video classification loss Lvid to train the teacher net-
work. Then, we train the student network by minimizing
the sum of the three losses: video classification loss Lvid,
frame classification loss Lfrm, and cosine similarity loss
Lcos. Formally, the loss functions of the teacher and stu-
dent, Lt and Ls, are represented by

Lt = Lvid (4)
Ls = Lvid + λfrmLfrm + λcosLcos (5)

where λfrm and λcos are hyperparameters to control the
contribution of frame classification and cosine similiarity
losses. Let us describe each loss subsequently.

Video classification loss: Video classification loss penal-
izes the prediction errors of the student (or teacher) net-
work, which estimates the softmax probabilities of action
classes. Given an input video V and the ground-truth one-
hot vector y, the video classification loss is defined by

Lvid(V; s) = CE(ŷ,y) (6)

where CE denotes the cross entropy loss function, and ŷ
means the softmax probabilities obtained from the confi-
dences scores of the student (or teacher) network.

Frame classification loss: Since we address the weakly
supervised action recognition, the frame-level ground-truth
labels are not available. Instead, we use the prediction of the
teacher network as the pseudo label for the frame-level pre-
diction of the student network. Consequently, we encourage
the student’s prediction to be similar with the teacher’s pre-
diction which is more accurate. Specifically, we define the
frame classification loss by

Lfrm(V; s, t) =
1

ns

ns∑
i=1

CE(ŷi
s, ŷ

i
t) (7)

where, for the ith frame, ŷi
s and ŷi

t are the softmax proba-
bilities computed by the student and teacher networks, re-
spectively.

Cosine similarity loss: The attention technique [38] re-
places queries with values based on the scaled dot-product
similarities between queries and keys. In our cross-
attention, queries and keys come from student and teacher
networks, respectively. Therefore, for each video frame, it
is beneficial to make student and teacher networks produce
similar features for stable knowledge propagation. To this
end, in this loss, we maximize cosine similarities between
the query and the key, by

Lcos(V; s, t) = −
1

ns

ns∑
i=1

qi
s · ki

t

‖qi
s‖‖ki

t‖
(8)

where qi and ki denote the query and key corresponding to
the ith frame.

4. Experiments

In this section, we provide experimental analysis and
comparative evaluation to show the effectiveness of the pro-
posed method.

4.1. Experimental Setup

Datasets: We experiment on two large-scale datasets: Ac-
tivityNet 1.3 [5] and Mini-Kinetics [4]. ActivityNet 1.3 pro-
vides samples from 200 action classes with 10,024 videos
for training and 4,926 videos for validation. The average ac-
tion instance per video is 1.41, and the average duration of
the videos is 167 seconds. Mini-Kinetics includes 121,215
training and 9,867 testing videos, each containing one of
200 action classes. The average length of videos is 10 sec-
onds.
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Table 1: Comparison with state-of-the-arts in efficient ac-
tion recognition on ActivityNet 1.3 [5].

Method Backbone mAP (%) GFLOPs

AdaFrame [45] ResNet 71.6 79.0
LiteEval [44] ResNet 72.7 95.1
ListenToLook [11] ResNet 75.6 37.5
SCSampler [22] ResNet 72.9 41.9
AR-Net [26] ResNet 73.8 33.5
Ours ResNet 75.9 30.5

AR-Net [26] EfficientNet 79.7 15.3
Ours EfficientNet 81.2 11.0

Evaluation metrics: Following the literature [26], we
measure the mean average precision (mAP) and top-1 ac-
curacy to evaluate the performance on ActivityNet 1.3 and
Mini-Kinetics, respectiviely. We measure the mean aver-
age precision (mAP) to evaluate the performance for ac-
tion recognition accuracy. We evaluate the computation cost
as giga floating point operations (GFLOPs). The computa-
tional cost highly depends on backbone networks, thus the
contribution of the other parts can be ignored for efficiency
evaluation. More specifically, the total computational cost
of the proposed method is given by ns × bs + nt × bt,
where bs and bt are the computational costs for student and
teacher’s backbone networks.

As a reference, the proposed student and teacher net-
works have 0.1 and 1.8 GFLOPs respectively for a sin-
gle input frame, when they employ EfficientNet backbones.
In case of ResNet-based backbones, they have 0.5 and
4.1 GFLOPs per frame. Note that the student uses low-
resolution inputs 112× 112 to decrease computational cost,
while the teacher takes high-resolution inputs 224× 224 as
its inputs. Different baseline methods have different sam-
pling intervals rs and rt for action recognition, so we report
average GFLOPs per video for all the experiments.

Implementation details: We use ResNet-18 [14] or
EfficientNet-B0 [33] for the student’s backbone network.
And we employ ResNet-50 [14] or EfficientNet-B3 [33] for
the teacher’s backbone network. All backbones are pre-
trained on ImageNet [31]. Here, we remove the last clas-
sification layers from the backbone networks. We set dk to
256 for the temporal feature fusion and the dynamic knowl-
edge propagation networks. In Equation (3), we set γ to 4.
The hyperparameters λf and λc are fixed to 0.5.

For experiments, we set the frame rates of input video to
16 FPS and split it into clips. Each of which has 16 frames.
As we described in Section 3.2, we regard each clip as a
single frame. Here, we simply pick the first frame for each
sampled clip. We adopt the fixed number of sampled frames
to train and to test the proposed method. Specifically, we

Table 2: Comparison with state-of-the-arts in efficient ac-
tion recognition on Mini-kinectics [4].

Method Backbone Top1 (%) GFLOPs

LiteEval [44] ResNet 61.0 99.0
SCSampler [22] ResNet 70.8 41.95
AR-Net [26] ResNet 71.7 32.0
Ours ResNet 72.7 18.3

AR-Net [26] EfficientNet 74.8 16.32
Ours EfficientNet 75.2 6.6

adaptively adjust sampling intervals rs and rt depending on
the length of input video, to satisfy ns and nt for a desired
GFLOPs of computation.

The proposed student-teacher model is trained in two
stages: First, we train the teacher network by minimizing
Equation (4). We then train the student via Equation (5).
Note that the parameters of teacher is fixed in the second
stage. The training is iterated for 40 epochs in both stages.
The Adam optimizer [20] is employed with an initial learn-
ing rate of 1.0 × 10−4. We decay the learning rate by a
factor of 0.1 after 15, and 30 epochs.

4.2. Comparison on AcitivtyNet 1.3

We compare the proposed method with recent state-
of-the-art methods on the ActivityNet 1.3 dataset:
AdaFrame [45], LiteEval [44], SCSampler [22], Listen-
ToLook [11], and AR-Net [26]. For the comparison, we
use the performances of existing methods reported in their
original papers. Comparison is done for the mAP (%)
and GFLOPs used. In Table 1, the dynamic student-
teacher ensemble outperforms all other methods regardless
of their backbone networks. Further, in Figure 1, Dynamic-
STE achieves the better efficiency-accuracy trade-off than
all other methods. The dynamic student-teacher model
achieves higher performance than the AR-Net with Effi-
cientNet, a modern architecture to provide more accurate
feature representations with less computational cost, by
0.5% in mAP with 28.1% less computation (15.3 GFLOPs
vs. 11.0 GFLOPs). Therefore, we can conclude that the
proposed method precisely recognizes actions in videos
with high efficiency by simultaneously employing light and
heavy networks.

4.3. Comparison on Mini-Kinetics

For extensive experiments, we also evaluate the perfor-
mance of the proposed method on Mini-Kinetics. Table 2
shows the top-1 accuracy score and GFLOPs of the pro-
posed method and those of existing methods [22, 26, 44].
In Table 2, we report the performance of the proposed
model with ns = 12 and nt = 3. Note that the average
video length of Mini-Kinetics is shorter than that of Acitiv-
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Figure 4: Accuracy vs. efficiency curves of the proposed
model and those of its baselines on ActivityNet 1.3 [5]: We
set nt from 5 to 20 for Teacher and ns from 20 to 80 for
Student and Student with KD. Also, for the other models,
we use nt ranging from 5 to 11 and fix the ratio ns/nt to 4.

ityNet1.3. So, the negative impact of sampling is less sig-
nificant in Mini-Kinetics. We see that the dynamic student-
teacher model again outperforms EfficientNet-based AR-
Net, which is the current state-of-the-art method, with only
40% GFLOPs of the AR-Net.

4.4. Ablation Study

Knowledge distillation baselines: We first define the
knowledge distillation related baselines that are used in this
sub-section. Student and Teacher denote models consisting
of a single student and teacher network, respectively. The
loss function in Equation (4) is used to train these mod-
els. Student with KD indicates the student network, which
is trained with knowledge distillation by minimizing Equa-
tion (5), of course without cosine similarity loss, Lcos.

Static Student-Teacher Ensemble: We argue for the
idea of using teacher model also during inference in order
to let it assist the student model with minimal added com-
putational cost. In this ablation, we evaluate a static set-up
of student-teacher ensemble at the inference. In this set-up,
all the interaction between the two models happens during
training only, through knowledge distillation. During infer-
ence, the two models have no influence on each other and
the video-level predictions of both networks are simply av-
eraged to arrive at the final classification scores, hence it is
static. The static student-teacher ensembles are referred as
Static-STE Avg and Static-STE Weighted Avg. The former

Table 3: Impact of dynamic knowledge propagation.

Model Frames per
video

mAP
(%) GFLOPs

Teacher 20 81.7 36.0
Teacher 5 80.1 9.0
Student 20 77.6 2.0
Student with KD 20 78.4 2.0

Static-STE Avg 25 79.0 11.0
Static-STE Weighted Avg 25 80.2 11.0

Dynamic-STE 25 81.2 11.0

simply averages the video-level predictions of Teacher and
Student with KD, whereas for Static-STE Weighted Avg,
we aggregate these predictions by using the weighted aver-
age fusion layer [34].

In Table 3, we compare the static student-teacher en-
sembles with baselines for mAP and GFLOPs on Acitiv-
tyNet 1.3. Static-STE Avg achieves better accuracy than
all the baselines except for Teacher, which uses 20 frames
per video and 3.5 times the GFlops. The mAP compari-
son over varying computation is shown in Figure 4. Again,
Static-STE Avg provides better trade-off between accuracy
and efficiency than all, while almost matches Teacher in the
lower GFLOPs range. We conclude that even the static ver-
sion of Student-Teacher pair compares favourably to most
Knowledge distillation baselines.

Dynamic Student-Teacher Ensemble: The dynamic
student-teacher ensemble, Dynamic-STE, with the pro-
posed dynamic knowledge propagation clearly performs
better than the knowledge distillation baselines, achiev-
ing the best trade-off between accuracy and efficiency in
Figure 4. Next, we compare it with the static student-
teacher ensembles, which is a more comparable baseline.
The proposed Dynamic-STE leads the Static-STE models
with higher mAP across the varying GFLOPs. This shows
the advantage of dynamic knowledge propagation over the
naı̈ve or weighted fusion. We conclude that pairing teacher
model with the student model during inference is effective,
and with the dynamic knowledge propagation it leads to
the new state-of-the-art for efficient video recognition and
promising results for future research.

Figure 5 shows qualitative results and the frame-level
probabilities indicating that a frame belongs to the ground-
truth action class. In these examples, we see that the pro-
posed method provides more accurate frame-level predic-
tions through the dynamic knowledge propagation to con-
vey the teacher’s knowledge to the student during the infer-
ence time.

Temporal feature fusion: Table 4 shows the impact of
temporal feature fusion network on performance of the pro-
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(a) Doing Step Aerobics

(b) Playing Badminton

Figure 5: Action recognition on two videos: (a) Doing Step Aerobics and (b) Playing Badminton. In both examples, the
first row illustrates input frames, and the second row shows the sequence of probabilities for ground-truth class predicted by
Student and Dynamic Student-Teacher Ensemble.

Table 4: Impact of temporal feature fusion.

Student Teacher mAP (%) GFLOPs

w/o fusion w/o fusion 79.3 11.0
w/o fusion with fusion 80.7 11.0
with fusion w/o fusion 79.9 11.0

with fusion with fusion 81.2 11.0

Table 5: Impact of loss functions.

Loss functions mAP (%) GFLOPs

Lvid 80.8 11.0
Lvid + λfrmLfrm 81.0 11.0
Lvid + λcosLcos 80.9 11.0

Lvid + λfrmLfrm + λcosLcos 81.2 11.0

posed method on ActivityNet1.3 dataset. Absence of tem-
poral feature fusion network for either student or teacher
degrades the mAP, showing its importance for extracting
more better features. Especially, the network in the teacher
enables to convey temporally aggregated knowledge to the
student in the dynamic knowledge propagation network,
and thus improves action recognition accuracy. The best
performance is achieved when both student and teacher net-
works employ the temporal feature fusion module.

Loss functions: Table 5 reports action classification mAP
scores on ActivityNet1.3, depending on the combinations

of loss functions. In this table, we observe that loss func-
tions λfrm and λcos for on knowledge distillation slightly
improves mAP scores. And we obtain the best performance
by combining all three types of losses. Note that in all the
cases in Table 5 dynamic knowledge propagation is used
even when Lcos is not used during training.

5. Conclusion
We propose a novel dynamic knowledge propagation

framework with teacher and student networks that oper-
ate in tandem for efficient action recognition, also interact-
ing during inference. Student network processes the ma-
jority of the sampled frames leaving few for teacher net-
work. The proposed knowledge propagation effectively
combines the knowledge from a handful of better quality
features from teacher model with the larger number of fea-
tures from student model. Extensive experiments demon-
strate the effectiveness of each component of the proposed
framework. Experiments also show that strategically em-
ploying teacher model also at the inference is effective for
efficient video recognition. Our method exceeds the state-
of-the-art methods on two video datasets, ActivityNet-v1.3
and Mini-Kinetics, while using about 1.4× and 2.5× less
GFLOPs, respectively.
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